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The analysis of two-layer exchange flow through contractions with a barotropic 
component treated by Armi & Farmer (1986) is extended to include exchange flows 
over sills and through a combination of a sill and contraction. It is shown that 
exchange over a sill is fundamentally different from exchange through a contraction. 
Control at the sill crest acts primarily through the deeper layer into which the sill 
projects and only indirectly controls the surface layer. This asymmetry in the control 
results in asymmetrical flows. The interface depth above the crest is not one half the 
total depth, as assumed in other studies by analogy with flow through contractions, 
but is somewhat deeper; the maximal exchange rate is less than for flow through a 
contraction of equal depth. When both a sill and a contraction are present, the 
contraction influences control at the sill crest only if it lies between the sill and the 
source of denser water. The response to barotropic flow is also asymmetrical: the 
transition to single-layer flow occurs at much lower speeds for a barotropic component 
in one direction than the other. 

Results of the analysis are applied to exchange flow through the Strait of Gibraltar, 
which includes both a sill and a contraction. It is shown that maximal exchange 
conditions apply throughout part of the tidal cycle, and observations illustrate 
several of the analytical predictions for barotropic flows, including the formation of 
fronts, single-layer flow, submaximal exchange and reverse flow. 

1. Introduction 
The exchange of two fluids of different density in a channel of constant width is 

a well-established topic of fluid mechanics with a wide range of applications (see for 
example Turner 1973). We consider here a modification of this ‘lock-exchange ’ 
problem in which a sill on the floor of the channel influences the maximal two-layer 
exchange. Two-way exchange over a sill differs in a fundamental way from the 
corresponding example of two-way exchange through a contraction (which is 
discussed in the companion paper by Armi & Farmer 1986), in that the sill only 
projects into the deeper fluid so that the hydraulic control acts on the total exchange 
flow primarily through its effect on the deeper layer. 

Maximal two-way exchange constitutes the steady-state limit that occurs when 
fluids of differing density are free to move in opposite directions across the sill. Sills 
are a common feature of channels separating deep estuaries and semi-enclosed seas 
from the open ocean and the overmixing solution for flows through contractions 
identified by Stommel & Farmer (1953) has often been invoked to explain the 
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consequences of this exchange to the local oceanography (see, for example, Anati 
1976; Bryden & Stommel 1984; Hogg 1985; Murray, Hecht & Babcock 1984; 
Stigebrandt 1977). However, we shall show that, in contrast to  exchange through a 
horizontal contraction, these applications of the special solution found by Stommel 
& Farmer are incorrect, since they are not applicable to  maximal two-layer exchange 
over a sill. 

The analysis is extended to include barotropic flows such as might be induced by 
meteorological effects or tides, in which we consider quasi-steady flows where the 
internal hydraulic adjustments are rapid compared with the forcing. Finally we 
extend the analysis to  include the combination of a sill and a horizontal contraction 
and consider both the case in which a sill and a contraction are separated and the 
case in which they are coincident. Thc solutions are integrated so as to determine 
the maximal exchange when averaged over a tidal cycle. These solutions are 
applicable to a broad class of naturally occurring flows in straits and channels. 

2. Basic assumptions and flow configuration 
Figure 1 shows the flow configuration with which we are concerned. Initially we 

consider a channel that  is of uniform width separating two broad and deep reservoirs 
which, except in the neighbourhood of the sill, is sufficiently deep that the speed of 
the thicker layer is negligible away from the influence of the sill. This latter condition 
is easily relaxed (cf. $7) but serves to isolate the essential physics of the control. I n  
the figure the source of less dense fluid is on the left. In an oceanographic application 
this less dense fluid might correspond, for example, to a fresh layer produced by river 
discharge into a deep estuary or alternatively an  ocean inflow moving into an inverse 
estuary such as the Mediterranean in which the effect of evaporation exceeds that 
of precipitation. The corresponding source of deep denser fluid is on the right. 

I n  figure 1 we have shown the sill lying within a relatively short section of the 
channel separating each reservoir. However, our discussion is equally applicable to 
a sill lying in a channel of infinite length and uniform width. I n  this highly idealized 
and unrealistic case, however, the reservoir to the right of the channel would have 
a surface layer that approached critical conditions asymptotically with distance from 
the sill crest. In  practice frictional effects would dominate in a very long, uniform 
channel. As discussed in detail subsequently, the exit to the reservoir, be, acts as a 
control on the surface layer and effectively isolates the hydraulic processes under 
discussion from frictional, mixing and other effects that might be relevant in the 
reservoir itself. 

In  the following discussion we assume that the flow is inviscid and each layer is 
homogeneous and unsheared, as in Armi & Farmer (1986). Mixing between the layers 
between the the sill crest and the exit be is neglected, although mixing may well be 
an important feature outside this region. To the left of the sill crest in figure 1 ,  the 
dense water runs down the slope whcre i t  may either be matched to a reservoir 
interface through an  internal hydraulic. jump, or may separate from the sill or merge 
with the fluid in the deep basin in some other way. We shall show subsequently that, 
over a wide range of interface depths in the reservoirs, the details of this process do 
not influence two-way exchange over the sill crest. The surface layer is matched to 
conditions in the reservoir to the right, outside the straight section. 
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FIQURE 1. Above. Side and plan views for maximal two-layer exchange flow, showing position of 
the interface. Below. Froude-number plane showing solution to (1 2) for maximal two-layer exchange 
(heavy line). The position of the sill (b,), and exit (be) in this plane are shown aa circles. The light 
lines correspond to solutions of the continuity equation (7) and the subcritical region is shaded. 
Note that the flow is critical (aZ = 1) at b, and be. 

3. Two-way exchange over a sill and representation in the Froude-number 
plane 

We are concerned with two-way exchange between reservoirs containing fluids of 
differing density pl ,  p2, subject to hydraulic control by a sill. Except in the trivial 
case of zero exchange, the interface will always be asymmetrical when the flow is 
controlled and thus subject to an internal hydraulic transition as the flow changes 
from subcritical to critical (Armi 1986). For two layers the flow is said to be critical 
at locations for which 

c2 = q+c = 1 (9’ 6 g ) ,  (1) 

where = u,2/g’yg is the densimetric Froude number for layer i ,  ui is the flow speed, 
yi the layer thickness and g’ = g Ap/p2 is the reduced gravity (Ap = p2-p1). The upper 
and lower layers are identified by i = 1, i = 2 respectively; where possible the 
notation and figures correspond to their equivalents in Armi & Farmer (1986). 

The composite Froude number G2 characterizes the essential nonlinearity of the 
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flow and solutions are thus expressed in terms of q, q. Figure 1 shows a solution 
(the solid line) in the Froude-number plane, in which condition (1) collapses to a 
straight line. 

The flow rate qi = yi ui b is expressed in non-dimensional form as 

where (yl + y2), is the total water depth at  the sill crest and b is the channel breadth, 
initially taken as constant. The depth of the channel - h(z) is measured with reference 
to the depth of the sill crest (h, = 0, see figure 1). The corresponding dimensionless 
depth is 

h h’ = 
(Y1 +Y2)0’  

and the dimensionless layer thickness is 

Yi 

(Y1 + Y 2 ) 0 ’  
Y; = 

(3) 

(4) 

The rigid-lid approximation, which is well justified for these flows in which the external 
Froude number is very small, may be expressed as 

y;+y;+h’ = 1 .  (5) 

y; = (q;)g&f. (6) 

Using the above definitions of q;, F t ,  y; and h‘, the dimensionless-layer depth may 
be expressed as 

Throughout this paper we adopt the convention that flow in the upper layer is 
positive and thus, for exchange flows, lower-layer speeds are negative. The ratio of 
flow rates in each layer is defined as qr = ql/ - q2, so that in steady flow between two 
homogeneous reservoirs without barotropic flow qr = 1. 

We restrict attention to the quasi-steady example for which the flow rates qr are 
independent of position along the channel. Then (5) and (6) constitute the continuity 
conditions, which may be combined to yield the continuity conditioninFroude-number 
space : 

For given qr, contours of constant qi/(  1 - h’): may be plotted as a function of q, E .  
Figure 1 ( b )  shows two contours of this quantity for qr = I ,  plotted as light lines. 

The Bernoulli equations for each layer are 

Hl = aPlU~+PlS(Yl+Yz+h)+p, (8) 

H2 = :P24  + P I  SY1 +P2 S(Y2 + h) +P, (9) 

where p is the pressure at the surface. Subtracting (9) from (8), dividing through by 
g’p2(y1+y2), and making use of the continuity equation (7), we express the 
dimensionless Bernoulli equations in Froude-number space : 
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FIQURE 2. (a) Above. Sketch showing plan view and interface shape for submaximal exchange with 
critical conditions at the sill crest but subcritical flow at the exit. Below. Froude-number plane 
showing a solution curve (heavy line) corresponding to the submaximal flow sketched above. The 
maximal-exchange solution is also shown (dashed line) for comparison. (b) Above. Sketch showing 
plan view and interface shape for submaximal exchange with critical conditions at the exit but 
subcritical flow at the sill crest. BeZow. Froude-number plane showing a solution curve (heavy line) 
corresponding to the submaximal flow sketched above, illustrating critical flow at the exit be and 
subcritical flow over the crest b,. The solution is coincident with a portion of the maximal-exchange 
solution although not extending to critical conditions at the crest; the extension of the maximal 
curve is shown as a dashed line. 

The rigid-lid approximation (5) allows (10) to be written 

Combining (1 1) and (6) yields 

= qr[2F2+ Ff-2AH"qi-iF. (12) 

Solutions, expressed in terms of the parameter A F q i - f ,  are plotted as a function of 
q, in figures 1, 2, and 3 (see also Armi 1985), using heavy lines. The lighter lines 
are contours satisfying the continuity condition (7). 
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1.5 2.0 F; 0 -  I 0.5 \ 1.0 
Maximal exchange 

Submaximal flow 

FIGURE 3. Solution curves in the Froude-number plane (from Armi 1985) with barotropic flow 
(9, = 0.5). These solutions apply also to flows in the same direction as well as to the exchange flows 
treated here. Only that portion of the maximal exchange solution for which Ff 2 1 is relevant. 

4. Maximal two-layer exchange flows 
Solutions applicable to an infinitely deep reservoir (i.e. on the right side of the sill 

in figure 1 )  must intersect the horizontal axis, since = 0 in the reservoir to the right. 
Calculation of these solutions (i.e. A H q ; - i  as a function of e, q), as well a5 
inspection of figure 1 ,  shows that the solution curve, plotted as a heavy line, which 
passes through G2 = 1 at the crest and which is identified with the maximal exchange 
rate (qi = 0.208 plotted as a light line in the figure) is the only one that also matches 
the reservoir condition = 1, Fi = 0. This unique solution is evaluated from (12): 

(13) 

This result is equally applicable for barotropic flows, since it is independent of qr and 
is the only specific solution in the plane corresponding to maximal two-way exchange. 

The interface shape in figure 1 may now be interpreted in terms of the maximal- 
solution curve plotted in the Froude-number plane. Critical conditions occur at the 
sill crest b, and also a t  the exit be. Between these two controls the flow is subcritical 
(shaded region in Froude-number plane). To the left of the sill crest the lower layer 
accelerates down the sill as a supercritical flow (CZ > 1 ) .  Eventually this supercritical 
flow is matched to the left-hand reservoir interface through an internal hydraulic 
jump or by some other process; these details, however, are unimportant to the 
exchange conditions since they are isolated from the control region by the supercritical 
flow. To the right of the exit be the surface layer accelerates (az > 1) and is eventually 
matched to the right-hand reservoir interface. I n  the Froude-number plane the 
solution for this portion of the flow is just a straight line running along the axis F2, = 0. 

A H q i - t  = 3 
2' 
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In this way the supercritical flows on either side of the control section serve to 
isolate the maximal exchange flow from the reservoir interface positions. This 
physical isolation of the exchange process underlies the importance of the maximal 
exchange solution, since the global problem of movement of fluid between the two 
reservoirs is fully determined, regardless of detailed processes occurring outside the 
control section. 

The interface height y;,, at the sill crest for the maximal exchange solution may 
be solved from the corresponding values of satisfying (1 1 ) and (1) and is 
found to be 

This result differs significantly from the corresponding maximal exchange interface 
height, 

found by Stommel & Farmer (1953) and discussed by Armi & Farmer (1985~) for 
the flow through a horizontal contraction. Thus, previous applications of Stommel 
& Farmer’s solution to two-way exchange over a sill are incorrect. 

Submaximal exchanges are also possible. The exchange rates for these solutions 
are less than the maximal solution (i.e. q; < 0.208) and in contrast to the maximal 
exchange are not isolated from both of the reservoir conditions. These solutions arise 
when the interface level in the left-hand reservoir is sufficiently shallow, or in 
the right-hand reservoir is sufficiently deep, to override one of the two controls. 
Figure 2 (a) illustrates the case when the right-hand reservoir interface is deep enough 
to flood the exit control be. This solution is shown beneath in the Froude-number plane 
and is seen to intersect the q = 0 axis at 4 < 1. The intersection of the solution 
with c2 = 1 at the sill crest corresponds to a lower exchange rate than for the maximal 
solution, which is also shown. 

The opposite submaximal example is shown in figure 2 (b). In this case the interface 
in the left-hand reservoir is shallow enough to flood the sill crest control. The solution 
in the Froude-number plane passes through G2 = 1 at the exit be (q = 0), but does 
not reach critical conditions at the sill crest and is therefore identified with a 
correspondingly lower exchange rate. The precise shape of the interface near the exit 
to the left-hand reservoir will be governed by interfacial friction and will not be 
discussed here. The limits on interfacial positions within which maximal solutions can 
occur are given in $7. 

and 

y;, = 0.375. (14) 

yio = 0.5, (15) 

5. Moderate barotropic exchange flows over a sill 
The effect of a barotropic component on the exchange flow can be expressed in 

terms of the ratio of flow rates qr. Figure 3 shows solutions for qr = 0.5. In contrast to 
flow through horizontal contractions, the introduction of moderate barotropic flow 
introduces no qualitative change to the solutions; in particular, a ‘virtual’ control 
does not appear since the position of the second control is already fixed at the 
right-hand exit of the channel, be. The solution curves are shifted, in this case toward 
higher values at  the sill, reflecting the relatively greater flow rate in the lower layer 
implied by our choice of qr = 0.5. However, the maximal solution, which is tangent 
to the horizontal axis at q= 1, has the same value (AH”qi3  = f) as before. 

The equations for barotropic flow over a sill are similar to those applicable to a 
horizontal contraction, except that the virtual control condition is replaced by an 
exit control at be, which for an infinitely deep reservoir acts only on the surface layer. 

3 P L I  164 
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FIGURE 4. Interface height above the sill crest yzo, and at the exit, 1 - yle, 
as functions of the barotropic flow, U,. 

For the moderate barotropic exchange flows discussed here, control is retained at both 
the sill crest and a t  the exit, so that the general shape of the interface remains similar 
to that sketched in figure 1. The effect of the barotropic component is to  modify to 
some extent the interface heights within the control section together with the 
corresponding layer speeds and flow rates. On dropping’ the primes, the control 
condition a t  the crest becomes 

and the definition of water depth at the sill crest is 

Y l O + Y Z O  = 1, (16b) 

where the flow speeds are non-dimensionalized with .\/(g’(yl + y2),). The relevant 
energy equation a t  the two controls is 

(16c)‘ 1 2 - 2  z(uzo u i o ) + ~ z o  = t(uie-@e)+ ( ~ z e - - h ) ,  

2(%0 %o)-Y10 = -I 2U1e - Yle. 

which immediately reduces to 

(16c) 1 2 - 2  

g e =  1, 
The exit condition is 

Yle 
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FIQURE 5. Volume flow rates q1 and qe as functions of U,, for moderate barotropic flow. 

and the continuity equation is 

We define the barotropic flow as 

UIO Ylo = Ule Yle. 

Uo = u10 Y l O  +u20 Y20. (16.f)  

We now examine solutions to the system of equations (16u-f) within these limits, 
which we refer to as moderate barotropic exchange flows. 

In figure 4 we plot solutions of the interface height relative to the sill crest at the 
control y2, and at the exit control be, as a function of U,. Comparison with the 
corresponding result for flow through a horizontal contraction shows that y2, for flow 
over a sill is always less, except at  the limit U, = - U,. The existence of a stationary 
layer at  the sill crest is only possible for negative barotropic forcing (from right to 
left); at  the positive limit U,  = 1 ,  the surface layer fills the channel at the sill crest. 

The flow rates over the sill (see figure 5 )  are similar, though not identical with, the 
equivalent results for a contraction. In the absence of barotropic forcing, maximal 
exchange over a sill occurs for a flow rate only 0.832 that for maximal exchange 
through a contraction. The dependence of exchange rate on barotropic forcing is also 
less linear for the sill flow than for flow through a contraction, which will have 
consequences for the corresponding parametrization of periodic forcing (I 7) .  

The asymmetry of the barotropically forced sill flow is even more striking with 
respect to the flow speeds and shear at the sill crest (Au,), shown in figure 6.  The 
flow speeds in each layer are equal and opposite at  a positive barotropic flow speed 
( U, = 0.196) and the shear at the crest increases monotonically from U, = - U ,  to  
U, = 1 .  In contrast to flow through a horizontal Contraction, marginal stability 

3-2 
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u, 
FIQTJRE 6. Velocities at the sill crest, ulo and uzo, as well as for the surface layer at the exit, ule, 
as functions of Uo for moderate barotropic flow. Note that the velocity difference Auo = U ~ ~ - - U , ,  

at the sill crest is always less than one, implying stable flow. 
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FIGURE 7. The flow ratio, qr, and surface-layer Froude number e0, at the sill crest 
as functions of U, for moderate barotropic flow. 
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FIGURE 8. Sketches of the interface positions as a function of barotropic flow U,. The arrows to 
the left of the sketches indicate the strength and direction of the barotropic component; the 
arrowheads within each sketch indicate direction and magnitude of flow rate for each layer. 
Motionless layers are shaded. Layer Froude numbers 9 and composite Froude numbers c2 are 
indicated beneath each sketch. 

(Au,, = 1 )  does not occur in the absence of barotropic forcing, so that the reason put  
forward by Stommel & Farmer (1952) for choosing the control condition at the 
narrowest section, would not apply to exchange flow over a sill. The Froude number 
for the surface layer at the sill crest is also consistently less than the corresponding 
value for a horizontal contraction. q, and qr are plotted in figure 7 ;  q, = 0.177 in 
the absence of barntropic forcing, compared with 0.25 €or the contraction (equation 
(11) in Armi & Farmer 1986). 

These solutions for moderate barotropic exchange flows are summarized in the 
central sketches of figure 8(c,  d, e ) .  For a barotropic flow from left to  right (figure 8 c )  
the interface drops, consistently with figure 4 ; the interface rises for barotropic flow 
from right to left (figure 8e). The moderate barotropic solutions shown in figures 4-7 
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erface height yzo above sill crest and total fluid depth h, at the transition 3etween 
single and two-layer fluid, for intermediate and strong barotropic flow. For U,  > 1 the interface 
intersects the bottom; for - 1 < U, < - U ,  it intersects the surface to the right of the sill and for 
U, < - 1  to the left. 

span the range - U, < Uo < 1 .  The limiting values correspond to flows in which the 
barotropic component is just sufficient to  arrest one of the two layers. These limiting 
cases for positive and negative barotropic flow are shown in figures 8 ( b )  and (f) 
respectively. 

For barotropic flow from right to  left, the limiting condition - U, is found from 
(16a, b, c )  : 

- ti, = - ($, (17) 

at which point yzo = $ and uz0 = ($); = 0.81. Unlike flow through a contraction, 
however, this limiting condition is not, symmetrical and is discussed further in $6. 
For positive barotropic flow the corresponding limit is 

u, = 1 .  (18) 

6. Intermediate and strong barotropic forcing 
Barotropic flows for which U, < - IT, or U, > 1 are associated with a single moving 

layer; we refer to  these flows as intermediate or strong to distinguish them from 
two-way exchange solutions discussed in $4. Sketches of the interface shape through 
a progression of different barotropic regimes, such as might be encountered through 
a tidal cycle, are shown in figure 8. 
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FIGURE 10. Flow rates pl, pa for moderate, intermediate and strong flow. 

Intermediate 

Figure 8 (d) shows the two-way exchange for U, = 0; figure 8 (c )  and ( e )  show 
moderate barotropic flow from the left and right respectively. The limiting flow from 
the left (i.e. equation is), is shown in figure 8(b ) .  The surface layer fills the channel 
at the sill crest and the interface is horizontal in the reservoir to the right. Thus the 
surface-layer Froude number is = 1 to the right of the crest and the lower layer 
is blocked. Further increase in the barotropic component will increase the depth of 
intersection with the sill, h, (figure Sa) ,  so as to maintain the exit condition ( 1 6 d )  : 

h, = @. (19) 

For flow from right to left, the transition to intermediate flows, with the arrest 
of the surface layer, occurs at U, = - U,  = - (f)t shown in figure 8 (f). Increased 
barotropic flow causes a front to form upstream of the sill crest. The front location, 
in terms of local channel depth h,, is found by eliminating uto, yio from the energy 
equation (16c) and making use of the identity U, = uZf h, : 

h, = U0(3@-2)- i .  (20) 

The front passes over the crest at Uo = 1, above which value the flow is in the strong 
regime (see figure 8h,  i). Further increase in Uo causes the channel depth at the front 
to vary linearly with the flow : 

h, = U,. (21) 

Plots of the interface heights, flow rates and flow speeds, corresponding to the full 
range of flow regimes sketched in figure 8, are shown in figures 9, 10 and 11 
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FIQURE 11. Layer speeds ulo, uz0 at the sill crest, and layer speeds ulf, uZf at the transition 
between single and two-layer conditions. 

respectively. Figure 9 also shows the location h, of the intersection with the sill 
(U,  > 1 )  and of the intersection with the surface (U ,  < UT). Note the very great 
sensitivity of the frontal position to the strength of the barotropic flow when U, is 
close to - 17,; in natural flows we anticipate the quite sudden appearance of a front 
upstream of the sill crest as the barotropic forcing proceeds through - U,. In contrast 
to two-layer flows through horizontal contractions, this intermediate condition, 
- U,  > U, > 1 ,  can occur only when the barotropic flow opposes the surface layer. 
All of the single-layer flows discussed above correspond to the box flows described 
by Armi & Farmer (1986), but with the control exercised by a vertical rather than 
a horizontal contraction. 

The flow rates, qt, vary linearly in the strong regime (figure 10) as do the flow speeds 
(figure 11). However, the flow speeds in this regime a t  the intersection point h, vary 
as @,; the intersection point always adjusts to maintain = 1. 

7. Flows through a combination of a sill and contraction with a barotropic 
component 

A feature of some straits is the presence of a coincident sill and contraction as shown 
in figure 12. This problem must in general be described by a function relating the 
width to the depth, rather than by parameters. As in the case of a contraction alone, 
there will be a control at  the narrowest and shallowest section (b,) and a virtual 
control whose position (b,) will depend on the barotropic forcing. However, the 
behaviour of the virtual control, b = h,, depends on both the width and depth. The 
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FIQURE 12. Sketch of plan view and three side views of two-way exchange past a coincident sill 
and contraction with moderate barotropic component. With moderate barotropic flow critical 
conditions occur at the narrowest and shallowest section b,,. A virtual control b, also occurs on the 
upstream side of b,,, with barotropic flow; this control must always lie on the side from which the 
barotropic component is directed. The two controls coalesce when Uo = 0. 

condition at the virtual control is found from the regularity condition (see Armi 1985) : 

giving 

1 db 1 dh 

which replaces (13d) in Armi & Farmer (1986). Similarly the total depth equation 
(13 e )  is replaced by 

where H(bv) is the relative channel depth at bv as defined by (27). 
In the absence of barotropic flows, the two controls coalesce and the interface at the 
narrowest and shallowest section is half the total depth. 

In  many straits (for example, Gibraltar) the sill is displaced from the narrowest 
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FIQURE 13. Sketch showing plan view and side view of exchange flow past a separate sill and a 
contraction, where B defines the ratio of width, and H the ratio of depths. Composite Froude 
numbers are indicated; critical conditions occur at the sill crest and at the narrowest section, which 
are connected by a subcritical flow. Supercritical flow outside of these two control points separates 
the intervening control region from conditions in the two reservoirs. 

section. Consider the problem sketched in figure 13, in which a contraction exists in 
the deep part of the channel, to the right of the sill, where the ratio of the widths is 

The exit control which separates flow in the channel from the reservoir, must occur 
at the narrowest section where db/dx = 0. The equations describing two-way flow 
through the channel are identical to  those derived in the absence of a contraction, 
except that the continuity equation must be modified using (25) : 

U l O  Y l O  = Ule Y1eB- (16e’) 

If the contraction were located to  the left of the sill, except in the special case 
discussed below, it would not influence the two-way exchange. In our idealization, 
the channel is deep on either side of the sill, so that the control exerted by the 
contraction would only influence the surface layer. If, however, the contraction to 
the left was not much deeper than the sill crest, the control a t  the sill crest could be 
flooded, in which case two-way exchange would be governed solely by the contraction; 
the sill would then play no active role in the exchange and the problem would revert 
to that discussed by Armi & Farmer (1986). 

Solutions for barotropic flow through st combination of a displaced sill and 
contraction (i.e. figure 13) are shown in figures 14, 15 and 16 for different values of B. 
The effect of reducing the width of the contraction relative to the sill is to reduce the 
range of positive U, over which two layers can coexist at the sill. Thus in figure 14, 
we see that, for decreasing B,  the lower interface height decreases and the transition 
to  strong forcing occurs at progressively smaller values of positive U,. A similar effect 
is apparent in the flow speeds (figure 15) ; the corresponding flow rates are shown in 
figure 16. For B = 0.1, the transition to strong flow occurs at Uo = 0.05. On the other 
hand, the influence of the Contraction is much smaller for negative barotropic flow 
and the value of - U,  is independent of B .  This asymmetry of the influence of the 
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FIQURE 14. Interface heights at the sill crest yzo, as a function of U,, 
for different width ratios B. 
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FIQURE 15. Layer speeds at the sill crest ulo, uZor as a function of U,, 
for different width ratios B. 
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FIQURE 16. Flow rates q,, -qz, as a function of U,, for different width ratios B. 
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FIGURE 17. Plot showing the barotropic flow speed U,, separating moderate 
from strong flows, as a function of width ratio B. 

contraction is due to the fact that wi th  negative barotropic component the flow in 
the upper layer is weak, so that the control exercised by the contraction is weak. 

The value of the barotropic component, from left to right, at which there is a 
transition between moderate and strong flow is a function of the width ratio B. This 
value, U,, = U,,, is given implicitly by 

B = /JTs(+VTs +$)-! (26) 
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FIGURE 18. Exchange rate q1 = -q2 without barotropic flow as a function of width ratio B. 

and shown in figure 17. It is interesting that the barotropic flow speed at which 
two-layer control is lost turns out to be a quite sensitive function of B when the 
relative decrease in channel width at the contraction is small (i.e. B close to 1). The 
dependence of flow rate qi on B without barotropic flow is shown in figure 18. 

Our idealized example includes an infinitely deep channel on each side of the sill. 
This approximation will often be good, but the modification for finite depth or a 
stagnant third layer (see figure 12) is readily included. Let the relative channel depth 
H be defined as 

H =  Y l O + Y 2 0  

Yie + ~ 2 e '  

U l e  4 e  - -+- - 1. 
Y l e  Y2e 

then the exit condition is (16d)  

An additional continuity equation for the lower layer is also required: 

~ 2 0  ~ 2 0  = ~ 2 e  ~ 2 e B 9  (16e") 

and the finite speed of the lower layer must now be included in the energy equation : 

1 2 - 2  2 ( ~ 1 0  ~ 2 0 ) - ~ 1 0  = f ( u l e - ~ z e ) - ~ i e *  (16c") 

Solutions may then be found in the same way for equations (16a, b, c", d", e', e", jJ 
and (25)  and (27) .  The effect of a finite depth through the exit will be to raise slightly 
the exchange rates found previously. However, the essential results will not change 
significantly. 

Just as for flow through a contraction alone, submaximal solutions in which a 
reservoir condition influences the control, are also possible for flows over sills. The 
calculation will be identical to that discussed in Armi & Farmer (1986) (equations 
(A 2a-d)  with yzr replaced by 1 -ylr). Submaximal flows occur whenever the reservoir 
interface depth on the right (ylr)R is deeper than f its depth at the exit control y le .  
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FIGURE 19. Exchange rate ( q }  averaged over a tidal cycle of amplitude U,,, for different values 
of the width ratio B.  The dashed line shows (q> for a contraction with depth equal to the depth 
of the sill crest. 

(This arises from the control condition = 1 for a single-layer flow, since we assume 
l?j = 0 at the exit.) The limiting left-hand reservoir condition for exchange controlled 
at the sill is that the reservoir interface be deeper than by,,. If the left-hand 
reservoir interface depth is between $yle and control is lost at  the sill and 
submaximal control of the upper layer occurs a t  the exit be. The exchange rate of 
the deeper layer is then specified by the continuity equation. For a sufficiently shallow 
interface in the reservoir to the left and an appropriate positive barotropic component, 
both layers flow in the same direction. This is an example of the ‘reverse flow’ 
discussed by Armi & Farmer (1986), for which U,, > UR+;  a similar effect is possible 
for negative barotropic flow. 

8. Periodic forcing 
The influence of periodic forcing, such as that produced by tidal effects, can be 

found by integration of (16a-b) and ( lSf ) ,  for given values of B and tidal amplitude 
Urnax, together with the appropriate flow rates for intermediate and strong flows. We 
restrict attention to quasi-steady flows for which the time taken for long-wave 
adjustments to travel between the sill (b,) and the contraction or exit (be) is 
significantly less than a quarter tidal period. 

The results of the integrations are shown in figure 19, where we have also shown 
for comparison the corresponding periodically averaged exchange curve for a 
contraction only. As the relative contraction width B decreases, the nonlinear portion 
of the average exchange curve shown in figure 19 decreases. This effect is a 
consequence of the reduced range of U, over which internal hydraulic control is 
retained for smaller values of B. For I:,,, > 1, the curve approaches a straight line 
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of slope 7r-I. The effect of the internal control is always to reduce the influence of 
the periodic flow on the average two-way exchange. As shown in $4 figure 5 ,  the 
dependence of flow-rate curves on barotropic flow for the sill is nonlinear, while for 
the contraction alone it is nearly linear. This distinction accounts for the fact that 
the influence of moderate tidal flow through a contraction is negligible, but is 
significant over a sill and through a combination of a sill and contraction. 

9. Discussion and application 
Two-way hydraulically controlled exchange over a sill differs significantly from the 

corresponding problem of two-way flow through a contraction. The control at the 
sill crest acts primarily through the deeper layer into which it protrudes, and only 
indirectly controls the surface layer. The interface is deeper over the sill crest and 
the lower layer flows more rapidly than in the corresponding contraction example, 
but the exchange is significantly less. The application of Stommel & Farmer’s (1953) 
result to exchange over a sill is therefore incorrect. 

The asymmetry of the sill-control problem is especially apparent for barotropic 
flows. Two-layer flow in which only a single layer moves, i.e. intermediate flow, can 
only occur for negative barotropic components. When a strait includes both a sill and 
a separate contraction, the contraction influences the sill exchange only if it  lies 
between the sill and the reservoir containing the denser fluid. The effect of positive 
barotropic flow is sensitive to the relative width of the contraction ; the narrower the 
contraction, the smaller is the positive barotropic flow required to overcome 
hydraulic control a t  the sill and create a single-layer flow. The differences between 
these various examples is also apparent when integrated over periodic forcing 
(figure 18). 

An illustrative example of many of the features developed in this analysis is 
provided by the Strait of Gibraltar. A recent photograph taken from the space-shuttle 
is shown in figure 20(b) (plate 1) together with a sketch emphasizing prominent 
features of the image as well as the location of the sill and of the narrowest section 
(figure 20a). 

The effect of evaporation from the Mediterranean exceeds that of river discharge 
and precipitation, producing relatively saline water that passes out through the strait 
beneath the less dense Atlantic water flowing in along the surface. The strait therefore 
separates a reservoir of dense water, lying on the right-hand side in our convention, 
from less dense water on the left (Ap/p2 x 0.002). It is characterized both by a sill 
(Camarinal) of depth N 280 m, width N 12 km, and also by a horizontal contraction 
of depth 900 m and width 9 km to the east at Tarifa. The strait is therefore an 
example of the type shown in figure 13 in which both a sill and a separate contraction 
control the exchange; the relative width of the contraction is B = 0.64.8.  A second 
and slightly deeper sill ( N 300 m) lies to the west of the first sill, separated by Tangier 
Basin (figure 20). 

Rotation produces an observed mean tilt of the interface, which is 30-50 m, 
depending on position in the channel. Given typical pycnocline depths of order 
50-150 m, rotation is likely to influence behaviour of the hydraulic controls, but it 
will not be a dominant effect and should not alter the essential results discussed here. 

Flow through the strait is modulated by strong tides and also by meteorological 
effects. Drawing from the extensive data presented by Lacombe & Richez (1982), 
Armi & Farmer (1985) calculated Froude numbers a t  various points along the 
channel. Except for a short portion of the tidal cycle when the surface layer may 
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FIGURE 20. (a) Map showing essential geographic features as well as sketches of the principal surface 
manifestations apparent in the photograph above. Clearly visible in the image are the surface effects of 
the internal undulzr bore radiating into the Alboran Sea and of the internal hydraulic jump connecting 
flow over Camarinal Sill to Tangier Basin. (b) Photograph of Gibraltar Strait taken from the space 
shuttle in October 1984. (Photo courtesy of Paul Scully-Power, National Aeronautics and Space 
Administration, Lyndon B. Johnson Space Centre, Houston, Texas 77058, Photo S-17-34-080). Inter- 
facial features associated with the internal hydraulics show up clearly as modblations in the sun glitter 
from the sea surface. The photograph was taken at 1221.38 h GMT, 11 October 1984. Low water 
(0.2 m) at Gibraltar was at 0749 h GMT, high tide (1.0 m) at 1416 h GMT. 

FARMER & ARM (Facing p. 74) 
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disappear near the contraction and fronts form suddenly, the flow to the east of the 
narrowest section is supercritical (fl > 1, f l  N 0). West of the sill at Spartel, 
during the outflowing tide the deep layer forms a thin supercritical flow (q > 1 )  
leaving Tangier Basin. Flow through the Strait of Gibraltar therefore has the 
asymmetric structure of maximal two-way exchange sketched in figure 13, although 
subject to significant modulation by the tides. A long internal wave can travel 
between Camarinal Sill and Tarifa Narrows in 1.5 h; for the 12.5 h semi-diurnal tide 
the quasi-steady assumption is therefore only approximate. 

The underlying asymmetry of the response to tidal flow, discussed in $$4,5, is also 
evident in figure 20. The semi-circular banded structure emanating from the eastern 
end of the Strait is the surface manifestation of an internal undular bore. There are 
many reports of this feature (Kinder 1984; Ziegenbejn 1969, 1970), which originates 
in the release of the energy associated with deformation of the interface downstream 
of the sill crest (figure 13) as the outflowing tide slackens and subsequently evolves 
into a train of nonlinear internal waves. Ziegenbein (1969) reports that the bore enters 
the Alboran Sea 5-6 hours after high water. The photograph in figure 20 was taken 
approximately 10 hours after the previous high water, which is consistent with the 
bore’s appearance well inside the Alboran Sea. 

(Tarifa Narrows) during 
part of the tidal cycle (Armi & Farmer 1985 figure 4), thus permitting submaximal 
exchange. Armi & Farmer (1985 figure 5) show that during a portion of the inflowing 
tide the lower layer reverses; thus the tide forces the exchange past the submaximal 
regime and into reverse flow (U,  > UR+). However, this inflow need not be critical and 
no infernal undular bore has been reported travelling westwards out of the Strait, 
despite extensive observations. 

The sudden appearance of fronts near the contraction at certain stages of the tide 
is consistent with negative barotropic flow through the transition speed U ,  = - ($. 
Thus the barotropic component during the outflowing tide can be intermediate, in 
the sense described in $5. Downstream of Camarinal Sill (figure 20) there are other 
surface features. These are consistent with the expected surface manifestation of the 
plunging supercritical layer and internal hydraulic jump required to match the 
outflow to the reservoir condition in Tangier Basin. The photograph was taken 2 hours 
before high water, at  which time a strong outflow is observed over the sill (see figure 5 
in Arrni & Farmer 1985). 

One other feature of the photograph in figure 20 is explainable in terms of the 
internal hydraulics. Just east of the narrowest section of the contraction an oblique 
wave pattern is observable. This is apparently the surface manifestation of an oblique 
internal wave pattern formed in the supercritical flow east of the narrowest section ; 
similar waves are observed in open-channel flows (Henderson 1966 pp. 239-250 
figures 7-9) and in gas flow through a nozzle (Prandtl 1952 pp. 275-277, figure 4.16). 

The exchange through the Strait of Gibraltar is therefore maximal for a significant 
portion, but not for all, of the tidal cycle. The hydraulic processes which limit flow 
through the Strait influence the larger-scale properties of the Mediterranean Sea and, 
together with the net evaporation rate, determine the salinity of the outflow. Bryden 
& Stommel (1984) recently estimated the exchange rates in this way, together with 
the corresponding outflow salinity for the Strait of Gibraltar, although their use of 
an interface depth over the sill based on (15) rather than (14), and their neglect of 
tidal forcing, limits the applicability of their result. While further observations are 
needed to resolve the details of these processes, it is clear that both the combined 
influence of the contraction and the two sills, and also effects of the various classes 

The interface in Tangier Basin is shallower than 
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of barotropic flows discussed earlier will determine the magnitude of the exchange 
between the Mediterranean and the Atlantic Ocean. 

We are indebted to Grace Kamitakahara-King and Sharon Yamasaki for carrying 
out the numerical calculations and to Dr Donald Booth for his assistance with the 
numerical analysis. We are also indebted to two reviewers, David Wilkinson and an 
anonymous one, for many helpful comments. All calculations were done independently 
a t  the Institute of Ocean Sciences and Sicripps Institution of Oceanography. This work 
received partial support from the Office of Naval Research. 
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